IS6-D-IR-170 (for divergent beams)

7Z02486
Description: 

The IS6-D-IR-170 is a 6” integrating spheres (5.3” inside) with a Germanium detector for use with highly divergent (D) beams up to 170°. The IS6-D-IR-170 comes with a IR detector, is calibrated from 700 to 1800nm and can measure up to 30W.

Specification

  • Ø8mm
  • 700-1800nm
  • 20μW-30W
  • Ø154 (mm)
  • 0.7mJ
  • 1kW/cm²
  • N.A.
  • 30W
  • >±85 deg
  • N.A.
  • ±1.5%
  • CE, China RoHS
Need help finding the right sensor? Try our Sensor Finder

FAQ

There are several models of IS6 integrating sphere detectors. how can I select the right one?

There is a simple to use selection guide.

Was this FAQ helpful to you? yes no
Close

Integrating spheres are used when you have divergent light sources. How do they work?

Integrating Sphere Theory
Integrating spheres are used when we have divergent light sources. As shown in the illustration, an integrating sphere has its inner surface coated with a surface that highly reflects (typically 99%) in a scattering, nonspecular way. Thus when a divergent beam hits the walls of the integrating sphere, the light is reflected and scattered many times until the light hitting any place on the walls of the sphere has the same intensity. 

A detector placed in the sphere thus gets the same intensity as anywhere else and the power the detector detects is thus proportional to the total incident power independent of the beam divergence. (The detector is so arranged that it only sees scattered light and not the incident beam). An ideal integrating sphere has a surface with reflective properties are Lambertian. This means that light incident on the surface is scattered uniformly in all directions in the 2pi steradians solid angle above the surface. The surface used by Ophir closely approximates a Lambertian surface.

3A-IS Series
The 3A-IS series has two 50mm integrating spheres in series with a photodiode detector. The two series spheres scramble up the light very well thus giving output very independent of incident beam divergence angle. The two spheres in series also insure that the light hitting the detector is greatly reduced in intensity thus allowing use up to 3 Watts even though photodiodes saturate at about 1mW. There are two models, the 3A-IS with a silicon photodiode for 400 – 1100nm and the 3A-ISIRG with an InGaAs detector for 800 – 1700nm

Was this FAQ helpful to you? yes no
Close

Are there any special problems with the calibration stability of integrating sphere sensors?

The Ophir integrating sphere sensors, models 3A-IS and 3A-IS-IRG have a white diffuse reflecting coating on the inside of the integrating sphere. The sensitivity of the sensor is quite sensitive to the reflectivity of the coating. If the coating absorption goes up 1%, it can cause a 5% change in reading. Therefore, care must be taken not to soil or damage the white coating of the sensors. Also it may be a good idea to send the sensors for recalibration yearly.

Was this FAQ helpful to you? yes no
Close

When using the fiber optic adaptor, how do we handle power loss due to the fiber relative to calibration?

All Ophir power meters, including photodiode power meters, have an air gap between the fiber tip and the sensor. Therefore they measure the power emitted by the fiber into the air and do not take into account any reflection losses there are in the fiber. Therefore, if in actual use, the fiber will be coupled with no loss to another element, then the losses should be added to the reading. These losses are usually about 4%. Thus if the reading on the Ophir meter is say 100mW, then in lossless use, the real power will be 104mW.

Was this FAQ helpful to you? yes no
Close

Do I need to recalibrate my instrument? How often must it be recalibrated?

Unless otherwise indicated, Ophir sensors and meters should be recalibrated within 18 months after initial purchase, and then once a year after that.

Was this FAQ helpful to you? yes no
Close

Among the Integrating Sphere accessories offered, there are “Port Plugs” (white), and “Port Covers” (black). What’s the difference?

An unused port should be closed, to prevent unwanted light from entering the sphere. Closing it with a diffuse white port plug, however, adds the surface area of that plug to the (diffuse white) effective area of the sphere that is doing the “integrating”. For a calibrated integrating sphere sensor, this change in the behavior of the sphere changes its calibration, and results in incorrect readings. In such applications, a black “Port Cover” should be used.

Was this FAQ helpful to you? yes no
Close

The IS6 integrating spheres have a specified “Sensitivity to beam size” and “Sensitivity to beam divergence”. What is that?

In general, as the divergence angle of the beam entering the integrating sphere increases - and as its diameter increases – the assumptions on which we base the sphere’s performance (infinite reflections inside the sphere walls, perfectly uniform distribution of light inside the sphere, etc.) become less correct. We therefore specify the maximum beam divergence (such as ± 60⁰), and we also state the maximum possible change in reading caused by change in beam size. In fact, we also state in the data sheet that the maximum additional uncertainty due to beam size is only ±1% for beam divergence < 30⁰, and ±3% for beam divergence > 30⁰. To give this more meaning: Basically, if you measure the power using a beam that is a few mm in diameter, that has a relatively small divergence angle, and is centered on the sphere’s input port aperture, you can safely ignore this additional uncertainty.

Was this FAQ helpful to you? yes no
Close

Videos

Integrating Spheres: Overview Integrating Spheres: Overview
Measuring beams coming out of a fiber Measuring beams coming out of a fiber Measuring beams coming out of a fiber

When you measure a beam coming out of a fiber, there are some parameters that have a different meaning than they do when referring to "regular" beam measurements. This video clarifies some issues you'll need to keep in mind.

Measuring Power of LEDs: UV, Visible and NIR Measuring Power of LEDs: UV, Visible and NIR Measuring Power of LEDs: UV, Visible and NIR

Measuring the emitted power of an LED can be tricky; it is different in some important ways from measuring the power of a laser beam. This video shows you how to use the Ophir 3A-IS Integrating Sphere Sensor, along with the Auxiliary LED accessory, to easily make accurate measurements in LED applications.

Calibration Factors Calibration Factors Calibration Factors

When a power/energy meter is in "Calibrate" mode, various "Factors" are displayed to the user. This video explains the meaning of each of these factors.

If your application requires measurement of a widely diverging beam, an integrating sphere might be the right solution.
Learn what Integrating Spheres are, what they help you do, and see the range of solutions available.

Drawing

Tutorials

Tutorials and Articles

Integrating Sphere Fundamentals and Applications

Introduction Read more...

Measuring Power of Divergent Beams with Integrating Sphere Sensors

An integrating sphere is used to measure a divergent light source. As shown in the illustration, an integrating sphere has its inner surface coated with a surface that highly reflects (typically 99%) in a scattering, nonspecular way. Thus when a divergent beam hits the walls of the integrating sphere, the light is reflected and scattered many times until the light hitting any place on the walls of the sphere has the same intensity.

 Read more...

White Paper – Measuring LED Power and Irradiance with Calibrated Photodiodes

In many industries LEDs are replacing traditional broadband light sources such as mercury, deuterium, Xenon, and quartz-halogen lamps. Systems and applications transitioning to LEDs are reengineered in terms of optics, electronics, heat management and more. Similarly, the equipment used by professionals to measure the output of these sources needs to be fitted for measuring LEDs.

 Read more...

Ophir Power/Energy Meter Calibration Procedure and Traceability/Error Analysis

This document discusses the interpretation and basis for stated measurement accuracy of Ophir Laser Power/Energy meters.
1. General Discussion
2. Combination of Errors and Total Error
3. Analysis of Power and Energy Calibration Errors
4. Detailed Analysis of Power and Energy Calibration Errors

 Read more...

VCSEL Measurement Solutions

Introduction Read more...

Laser Measurements in Materials Processing: How and When They Absolutely, Positively Must Be Made

19th century British physicist and engineer William Thomson, 1st Baron Kelvin, was the first to say, “If you can’t measure it, you can’t improve it.” When applying this principle to improving laser-based processes, there are a variety of parameters that must be measured. Given the continuously rising power of laser systems in material processing, the requirements for measurement systems are more challenging than ever. Which technologies are available to measure high-power lasers? How often should they be measured? What measurements should be tracked? When this data is collected, what should be done with it? Read more...

How do I know what range, or scale, to set my power/energy meter to? And what happens if I go over range?

Each given range represents one level of gain of an internal amplifier. The electronics, as always, have a limited Dynamic Range. If the measured signal is too low, in other words near the bottom of the range, then it may be lost in the noise and the reading will be inaccurate and noisy. If it’s too high – there may be saturation issues. To give an instrument a usefully wide dynamic range, multiple scales or ranges are used. Switching from range to range can be automatic (“Autorange”), or manual. Autoranging simply starts automatically at the least sensitive range and works its way down the ranges, sampling the signal as it goes, till it finds a range at which the signal is properly detected. Note, by the way, that only in POWER mode is Autoranging available. If we are working in Single Shot Energy mode, there is no Autoranging – simply because when we are measuring a single pulse, the instrument has no opportunity to work its way down the ranges as in Power mode.

 Read more...

White Paper – Low Frequency Power Mode

AbstractThis document describes the inherent problems involved with measuring average power for low frequency pulsed laser sources, and describes the new “Low Freq. Power Mode” being offered on many Ophir devices and meters to solve these problems. It describes how to use the new mode and mentions some tips for obtaining best results. Read more...

Types of power / Energy Laser Sensors General Introduction

Power and Single Shot Energy Sensors
Ophir provides two types of power sensors: Photodiode sensors and Thermal sensors. Photodiode sensors are used for low powers from picowatts up to hundreds of milliwatts and as high as 3W. Thermal sensors are for use from fractions of a milliwatt up to thousands of watts.
Thermal sensors can also measure single shot energy at pulse rates not exceeding one pulse every ~5s.

Repetitive Pulse Energy Sensors
For higher pulse rates, Ophir has pyroelectric energy sensors able to measure pulse rates up to tens of KHz. These are described in the energy sensor section, section 1.3.

 Read more...

Measuring Average Power of Pulsed Lasers with Photodiodes

BackgroundWhen measuring average power using a photodiode detector such as PD300 or IS6-D-VIS, the maximum power or saturation power is determined by the maximal photocurrent that the photodiode can generate while still maintaining linearity. The saturation power is typically 3mW for a bare silicon photodiode. Adding attenuation in the form of a filter or through the use of an integrating sphere will naturally increase the saturation power of the sensor as a whole. Read more...

5 Situations Where Laser Performance Measurement is Necessary

Measuring the performance of a laser has possible for a number of years and is accomplished with a variety of techniques. These electronic laser measurement solutions give the laser user more relevant, time-based data that shows trends in laser performance rather than single data points. While these solutions have provided laser users with the ability to present data in a simple and easy to understand manner, the application of the data still seems to be unclear to many laser users. Read more...

Accessories

Customers that purchase the above items also consider the following items. Ophir-Spiricon meters and sensors include a standard manufacturers warranty for one year. Add a one year Extended Warranty to your meter or sensor, which includes one recalibration.

See specification sheet for details on which accessories are supplied with sphere.