Similarly, because many industries are required to produce products and parts with a high degree of precision, traceability records and data must be kept that prove that the process is in control and producing at spec during a manufacturing campaign. In other words, quality and engineering teams need a reliable, accurate, and reproducible method to characterize beam structure, i.e. spacial intensity, 2D and 3D tomography, diameter, centroid location, etc. They realize that variables such as collimation, energy density, beam propagation, and concentration have a profound impact on overall beam quality and process consistency.
Prior to the advent of digital profiling, if a “laser jock” wanted to know what the beam looked like, they employed a number of different and somewhat primitive techniques, such as burn paper or photographic film, targeted reflections, wooden blocks or tongue depressors, a chunk of drywall, or scrap pieces metal or aluminum. “Sophisticated” operators used acrylic blocks (acrylic mode burns). While these techniques did yield some results, they were subjective and cursory at best. Precision, accuracy, reproducibility, and safety were lacking.
As laser science and photonics has progressed so has the means for improved digital laser profiling techniques and measurement. The intent of this brief is to discuss key considerations and basic steps required to identify and use a camera profiling system (arrayed camera, attenuator, and beam dump). It is important to note that this discussion is by no means all-inclusive. There are many different ways to profile a beam. However, the profiling system described here is a suitable and effective way to obtain high precision quantitative and qualitative data, which when properly used (below 400 Watts) can assist a laser operator in characterizing and optimizing their laser system with precision, accuracy, reproducibility and safety.