All lasers or optical delivery systems degrade over time. A Power and Energy meter will help verify this and quantify this over time. It's a diagnostic tool to ensure that the laser system is delivering the specified amount of energy or power. The precise measurement of energy may critical in many of the processes in which they employed.
Power Meters FAQ's
General Information
Unless otherwise indicated, Ophir sensors and meters should be recalibrated within 18 months after initial purchase, and then once a year after that.
Medical, semiconductor, welding, cutting, micromachining, barcode laser mfg
Ophir water cooled sensors measure the heat flow across the thermopile disc and therefore are quite insensitive to the water temperature or flow rate within the given specified limits. However, sudden changes in the water temperature or water flow rate can cause a disturbance to the reading until the flow rate/temperature stabilizes again. Therefore we specify in our water cooled sensors that the water temperature should not change faster than 1C/min. Likewise, sudden changes in flow rate (e.g. switching another device connected to the same water line on and off) can results in temporary disturbances in the power reading.
The internal monitoring does not usually include the rest of the power transmission train, mirrors and fibers. Since there is usually a discrepancy between what the internal meter measures and what is actually coming out, there is often a need to measure externally as well as internally. However, many users do not realize this.
The spectral range stated at the beginning of the spec indicates the range of wavelengths for which the sensor can be usefully used even if the exact calibration is not specified for that range. This means that over the calibrated wavelength range, the accuracy is specified and guaranteed. Over a wider useful wavelength range, the sensor is usable but no accuracy is guaranteed. In general over this wider range, the accuracy will be within up to ±15%.
Yes, many users of aesthetic lasers may not have that awareness that what actually comes out of the laser delivery system may vary dramatically from what the internal monitors displays what is coming out and needs external monitoring.
This can happen if one disconnects the meter from StarLab by pulling out the USB connection without shutting down StarLab first..
It will not happen when normally closing the StarLab application.
Yes you can for Ophir thermal or photodiode sensors, but then the output will not be calibrated. Ophir sells an adapter (Ophir P/N 7Z11010) that connects to the DB15 plug and has BNC output. This will make available the raw output from our thermal and photodiode sensors.
How long you fire the laser into the meter depends on you. Some manufacturers do it 100% of the time via a beam splitter. That way they have a constant feedback system to allow them to not only monitor the power output, but also to control it so the laser is stable. Other people only do it for a short time to verify the setting is producing the correct amount of power. For different applications different sensors would be needed. For continual monitoring we would recommend a sensor that is designed to have the laser on it all the time. For short time measurements, a sensor designed for short use would be more ideal. For lasers that are pulsed, we recommend firing the laser a couple of times to get an understanding of the pulse to pulse change as well as being able to monitor the average. However, some applications only want to verify the energy setting, so they only fire the laser once to see if they are ready to go. Again, the decision is up to you. Processing the information in the PLC is completely up to you. Usually this requires some form of calibration so you can take the information you are delivering to the PLC and correlate it with your operator display. I.e. Volts/Watt. How many Volts from the sensor is equal to X amount of Watts the laser just produced.
Chargers can be ordered from your local Ophir distributor. For reference: 12 VDC, 500 mA, with the center pin being negative. The center must be negative with the older sensors Nova, Laserstar and NovaII. The newer sensors have the ability internally to switch the polarity to allow the use of different polarity power supplies so the polarity does not have to be negative.
Yes, as long as it has the correct voltage output, current output, connection polarity and it is CE certified.
The easiest way for customers inside the United States to order our most common spare parts for Ophir power/energy meter equipment is to use our web site. We have a dedicated section under the Ordering tab on our web site listed below where you can order Spare Parts. If you are outside the United States, or you do not see the parts you are looking for, please contact our Sales or Service Departments and they can help you with spare parts.
Please send an e-mail request to our Calibration department that includes the S/N of the device you are missing the Certificate of Calibration for and we would be happy to e-mail you a copy of the latest Certificate of Calibration for the device. Calibration@us.ophiropt.com
1Z part numbers are not RoHS compliant. Meaning there may have been lead used in the manufacturing of the device. To easily identify our parts that are RoHS compliant, we changed only the first character of the part number from 1 to a 7 so we could retain the remainder of the part number for easy identification by us and by customers. If you need a data sheet, try substituting a 7 instead of a 1 in the part number of the device you are looking for. If you still can't find us, please contact our Service Department who would be happy to assist you in getting the needed data sheet. We have a link below to a statement on our web site regarding RoHS compliance if you need it for your records. https://www.ophiropt.com/laser-measurement-instruments/customer-support/customer-support/rohs-compliance