Articles

Select any filter and click on Search to see results

Introduction
Ophir has two types of energy sensors, pyroelectric and RP. Pyroelectric sensors are for measuring repetitive pulse energies and average powers at pulse rates up to 25000 pulses per second and pulse widths up to 20ms. RP sensors are specialty items mainly for very long pulse widths and very high average powers that cannot be measured by pyroelectric sensors. Note that single shot energy with pulse rates less than one pulse every 5s or so can be measured with thermal sensors described in the power sensor section

Most drivers get caught speeding at some time during their driving experience. A common scenario occurs when a policeman uses a LIDAR speed meter to indicate that a car is over the speed limit. When the car is caught and pulled over, the driver shows a surprised, innocent face, attempting to get out of a fine. But when the policeman shows the driver the reading on his LIDAR speed meter he knows he’s going to have to pay. Can the driver claim that he was within the speed limit, claiming that the LIDAR instrument is not calibrated recently?

Various LIDAR instruments may be used to measure speed, direction of motion of a motor vehicle, and the distance to another moving vehicle. LIDAR instruments are used by the police to enforce speed limits and to analyze car crashes or crime scenes in order to reconstruct the scenes.

A common thread running through many Frequently Asked Questions relates to damage of measuring sensors.

Many applications involve considerable powers and/or energies; since laser measurement has us deliberately putting a measuring instrument in harm's way, let's have a look at the various effects a laser beam can have on an instrument in its path.

Kevin Kirkham, Northwest Regional Sales Manager, Ophir-Spiricon

PREH, Saale Germany, manufactures electronic controls for some of today’s finest automobiles. Production facilities are located in Portugal, Mexico, Romania, and the USA. PREH uses laser ablation technology to manufacture the controls that operate climate and driver systems. This process is made possible when a focused laser beam is used to remove layers of coatings to form an optically transmissive area of the device. This transmissive, laser etched area forms the symbol that informs the driver of the controls function.

Power and Single Shot Energy Sensors
Ophir provides two types of power sensors: Photodiode sensors and Thermal sensors. Photodiode sensors are used for low powers from picowatts up to hundreds of milliwatts and as high as 3W. Thermal sensors are for use from fractions of a milliwatt up to thousands of watts.
Thermal sensors can also measure single shot energy at pulse rates not exceeding one pulse every ~5s.

Repetitive Pulse Energy Sensors
For higher pulse rates, Ophir has pyroelectric energy sensors able to measure pulse rates up to tens of KHz. These are described in the energy sensor section, section 1.3.

James Stewart, MSc, LVR Limited, UK

The assessment of laser beam exposure used for entertainment applications is a challenging undertaking; both the emission and the environment pose particular obstacles to persons with the responsibility of ensuring emissions are below the permissible exposure limits. This article discusses how use of Ophir’s BC20 detector is able to offer significant improvements in measurements quality over traditional laser power detectors intended for CW beams. In addition, the BC20 simplifies the measurement process and allows measurement of live effects, opening the way for assessments to be undertaken with a much greater degree of accuracy. This provides benefits to assessors, whether they are operators, venue safety staff, or regulators, who can now additionally monitor emissions and ensure they are not exceeded during performances.

Pages