Beam Profiler FAQ’s

Customer Service

01/11/17

We have recently updated our website product pages to include drawings of items. If you are looking for a drawing for an Ophir-Spiricon product, please visit its product page and click on the Drawings tab. Drawings are available in a number of different formats including PDF, SolidWorks, and STEP.

05/26/15

This depends on whether you are using a thermal sensor or a photodiode sensor. With our most sensitive thermal sensor, model RM9, one can measure down to about 500nW. With our photodiode sensor heads we have a several types, silicon, InGaAs and Germanium. Each has a spec on minimum power, which can be as low as 10pW

05/28/15

The largest beam that can impinge directly on the camera depends on the size of the camera sensor.

  • Ophir-Spiricon offers CCD camera types, i.e. 1/1.8" format, 1/2" format, and 35mm format. The 1/1.8" format cameras, such as the SP620U and GRAS 20 can image beams as large as 7.1mmW x 5.4mmH. The smaller camera format, such as the SP503U can image beams at 6.3mmWx4.7mmH.
  • Beams can be measured in the infrared with the Pyrocam III
  • Large format digital cameras are available for high resolution and large area such as the L11058 that can measure beams up to 20mmWx13.5mmH.
  • For beams larger than those mentioned above, there are two techniques for measuring the beam.
  • One is to use a beam expander in reverse to reduce the beam width by a known factor, so that it does fit onto the camera.
  • The second method is to impinge the beam on a scattering reflecting surface, and then image that surface with a lens on the camera. In this case there is no limit to the size that the beam can be.
05/27/15

There is a Microsoft Windows XP update (KB925902) that causes an Illegal System DLL Relocation error with the Pyrocam III Control Console. Microsoft has released a hot fix for the problem with the RealTek Audio, and the fix also works for The Pyrocam III Control Console.
See: http://support.microsoft.com/kb/935448
and scroll down to "Method 3: Install update 935448 from the Microsoft Download Center". Click the "Download the 935448 package now" link and follow the instructions.

05/28/15

The smallest beam depends on the pixel pitch in the camera.

  • For 1/1.8" format cameras the pixel pitch is typically 4.4µm. At least 7 X 7 pixels should be illuminated on the camera. This means the beam should be at least 40µm to measure effectively.
  • For focused spots in the range of 10µm, a microscope objective or a re-collimation and refocus with a long focal length lens can be used. Then resolution of the camera can be effectively magnified by about a factor of 10, so that resolution less than 1µm is obtained. Thus a focused spot beam could be as small as 7µm, and an effective measurement could still be made.
05/28/15

This is a known ActiveX issue with Microsoft. You can occasionally get an error message stating, "The system DLL user32.dll was relocated in memory. The application will not run properly. The relocation occurred because the DLL C:\Windows\System32\Hhctrl.ocx occupied an address range reserved for Windows system DLLs. The vendor supplying the DLL should be contacted for a new DLL." There are two ways to get around this. First, you can just run the Setup.exe from the individual folders on the CD. Or second, you can click the below link and then click the Download button to download the WindowsXP-KB935448-x68-ENU.exe file. Run this to install the 935448 hot fix. You will not need to restart the computer. Then you can install the software from the Flash screen.
http://www.microsoft.com/downloads/details.aspx?FamilyId=74AD4188-3131-4...

05/28/15

Fortunately all of the latest beam profiler software are available from the web site at; https://www.ophiropt.com/laser-measurement-instruments/beam-profilers/se... You do need to fill out a short form and then you're welcome to download any of the software packages. Be sure to identify the correct package for your beam profiling system. Note; The Photon Scanning Slit Profiler software is also posted here along with the latest version of legacy beam profiling products.

05/28/15

After numerous requests for re-calibration of M2 systems, in 2008 Ophir-Spiricon started a recalibration program for its M2 systems. This program allows the equipment to be sent back to the factory to be inspected, lubricated and re-calibrated. This enables customers to comply with their ISO regulations. Please click the below link to be directed to a section of our web site where you can request an RMA to return your equipment for re-calibration.
https://www.ophiropt.com/laser-measurement-instruments/customer-support/...

05/28/15

The Ophir-Spiricon software products that are compatible with Windows Vista and Windows 7 are outlined below. Also outlined below are the cameras and associated hardware that are compatible with Windows Vista and Windows 7 32 and 64 bit. 
 

Product Software Version 32 bit compatibility 64 bit compatibility
BeamGage (S, P, & E) V 5.0 Yes V 5.4*
ModeCheck V 5.0 Yes No
LBA-USB V 4.83 Yes V 4.88*
LBA-FW V 4.83 Yes V 4.91*
LBA-PC V 4.18 Yes V 4.26*
M2-200 V 4.58 Yes V 4.61*
M2-200-FW V 4.70 Yes V 4.75*
Pyrocam III V 1.89 Yes V 1.93
BeamStar V 1.52 Yes No
 

*The software will install and function, but the camera may not unless there are updated 64 bit drivers also installed.

Product 32 bit compatibility 64 bit compatibility
GRAS20/SCOR20 Yes No
SP620U/SP503U Yes Yes BeamGage only
Pyrocam III Yes BeamGage 5.4 and Pyrocam III Control Console 1.93
XEVA Yes No
LW11058/LW230 Yes LBA Pending BeamGage Pending BeamGage only
Frame Grabber Cards Yes No
M2Motor Controller Yes No
 

 

05/28/15

Ultracal is a method of calibrating the zero level of the A to D converter precisely to the zero level of the CCD or other type camera. Ultracal has a number of features that make it much more effective than standard background subtraction. Ultracal works as follows:

  • All incoming laser radiation is blocked from the camera, allowing any ambient radiation which will enter the camera during measurement, to still impinge upon the camera. (However, ambient radiation should be minimized under all cases.)
  • The A to D converter is then set to capture frames from the camera, and adjust the zero level of the A to D converter. The zero level of the converter is adjusted until it and the baseline of the camera are as close as possible to each other. However, the digitizer is set slightly lower than the zero of the camera so that all noise components from the camera are digitized. This is assured by raising the camera DC level until the digitizer does not report any zero counts, i.e., all negative going noise from the camera/digitizer combination is at least one positive count. Once this baseline level is set, the software accumulates and averages 64 frames so that a baseline is obtained that is essentially free of random noise, but contains any offset or shading from the camera.
  • In all subsequent laser signal frames this baseline is subtracted pixel by pixel from the signal frame.
  • A unique characteristic of Ultracal is its treatment of what we call negative numbers. Consider that a given pixel signal is exactly at the same level as the average background obtained from the 64 frames. When these two are subtracted from each other, the output magnitude will be zero. On the other hand, if a small positive noise spike occurs on a given pixel, of say, 2 counts higher than the average, then the output from that pixel will be a +2. The third case would be when noise drives the pixel signal lower than the average; for example, 3 counts less than the average. When the average is subtracted from this signal, the resultant is -3 counts. Spiricon holds a patent in which these negative 3 counts are retained in the memory subsequent to the A to D converter. In other acquisition systems negative numbers resulting from background subtraction are truncated to zero.
  • By maintaining the use of both positive and negative noise counts for each pixel in the sensor, the negative signals can offset the positive signals, and thus the background averages much closer to zero. This enables much more accurate measurement of beam width and other beam characteristics.

 

05/28/15

You can, but when a laptop is docked you cannot use the onboard GigE connection. It is deactivated by the connection to the docking station. You must use the GigE connection on the docking station. Or, you can use the GigE to USB 3.0 adapter that is included with the Ophir-Spiricon GigE device. This adapter will also allow you to connect additional Ophir-Spiricon GigE devices to the laptop.

05/28/15

There is no NIST standard laser beam by which beam analyzer results can be compared and verified. Spiricon engineers, however, have generated mathematically derived beams, added mathematically derived random noise to the beam, and then performed various beam measurements. Since the original beam was mathematically derived, the accuracy of the beam measurements can be verified under realistic conditions.

  • This process verifies the accuracy of the software, but does not do any verification of the accuracy of the camera/acquisition combination.
  • Camera/acquisition system combination verification can be performed by making very accurate measurements of characteristics such as beam width vs. intensity on the camera to verify that the camera is linear. The beam can also be moved about the camera to make sure that it is uniform. This type of measurement must be verified by meticulous measurements.

 

06/01/15

The answer depends on what information is wanted from the beam width.

  • The most representative measurement of a beam width in determining how the beam will propagate is the Second Moment measurement. However, the Second Moment measurement can have problems if there is diffraction in the beam before measurement, which puts a significant amount of energy in the wings. This energy may diverge faster than the rest of the beam, and if it is included in the measurement, it will give a beam width much wider than reality. However, an aperture can be used to limit the beam width measurement to energy inside these diffraction rings.
     
  • A second very good measurement of beam width is the software equivalent knife-edge measurement. This measurement is less sensitive to diffraction in the wings of the beam, although it will give a beam width measurement which is weighted by energy out in the wings. It is less sensitive to noise.
     
  • Sometimes the most important information is not the beam propagation characteristics, but how much energy is near the peak of the beam. In this case, a percent of peak beam width measurement would be more useful.
05/28/15

With extremely fast P6 computers the acquisition speed is now limited only by the camera. This is typically 30Hz in the U.S. with the RS-170 standard, and 25Hz in Europe with the CCIR standard.

  • Pyroelectric cameras can acquire data with pulse repetition rates up to 1kHz, but output data at approximately 60Hz.
  • Shutters enable CCD cameras to split out single pulses out of a pulse train up to 10kHz pulse repetition rate.
05/28/15

 The most reliable synchronization is to have the beam analyzer camera system trigger the laser. Then 100% synchronization is achieved.

  • When triggering the laser is not possible, then the camera can sometimes be triggered from the laser. The LBA provides both Trigger In and Trigger Out functions.
  • A very simple system is Ophir-Spiricon's Video Trigger, in which the camera is free running, and the software simply looks to see if a signal of a pre-determined minimum magnitude is present from a pulse. If it is, then that signal is acquired and displayed. If no signal is present, then that frame is discarded. This video trigger system achieves about 98% reliability.
  • An optional optical accessory can also be used to synchronize with the pulsed source.
05/28/15

Different measurements have different accuracy. The accuracy is also dependent upon the conditions of the signal coming into the camera. Ideal conditions consist of signal that nearly saturates the camera, and the 1/e2 width covers about 50% of the pixels. In this case the error of most measurements is less than 1%, but no greater than 5%. When fewer pixels of the camera are covered by the beam, or when the beam intensity is reduced, measurement accuracy is compromised. However, Ophir-Spiricon's Ultracal system maintains excellent accuracy down to very few pixels and very low intensity. Refer to Ophir-Spiricon's published articles for specific details.