Power Meters FAQ's

Thermal Laser Power Sensors

Other Specs


Yes. Please reference the chart below:

Minimum Flow Rates for Water-Cooled Sensors

Sensor Recommended flow rate at full power1
Minimum flow rate at full power1
Absolute minimum flow rate
pressure drop across sensor
(bar, at maximum flow rate)
Pressure drop across sensor
L250W 3 3 3 0.3 0.03
L300W 3 3 3 0.3 0.03
1000W 10 3 3 0.3 0.03
L1500W 10 3.5 3.5 3 0.03
L2000W 10 4 2 0.6 0.06
5000W 10 10 4.5 0.6 0.06
6K-W-200x200 6 6 5 0.5 0.05
10K-W 10 10 2 2 0.2
15K-W 15 15 3 3 0.3
30K-W 25 25 6 2 0.2
120K-W 60 60 60 4 0.4

Note: The coolant pressure should not exceed the minimum by more than 2.5 times.

You can find a lot more information about the correct use of water-cooled sensors in the article "How to use water cooled Ophir sensors", here.


Well, partly right.

Ophir has for many years had a few sensors that are designed for intermittent use. They are marked by two numbers like 50(150), which means it can measure 50 W continuously, or 150 W for a brief exposure (1.5 minutes in this example). Keeping in mind that power is energy over time, and that it is the total energy absorbed over time that causes a sensor to heat up, it should be possible to expose a sensor to “too high” power but only for a short time, and have the sensor survive the experience. The sensor can treat that short exposure as if it were just one long “single shot” pulse, and measure the energy of that pulse. Divide the energy by the (known) pulse width, and that gives the power during the pulse. (It can’t measure power directly this way, though, since a thermal sensor’s response time to power is itself a few seconds). For example, the moderate-power L40(150)A-LP2 has a 10KJ energy scale (several other sensors also have multi kJ scales); to measure power of an 8KW beam, we can fire the laser for 0.5 seconds with the sensor in energy mode, and we’ll measure 4KJ energy in the “pulse”. Dividing that by 0.5 seconds gives the 8KW beam power. Of course we then need to wait for the sensor to cool before repeating, but in some applications that may be perfectly OK
If you have the StarBright meter, you can do the above automatically, with any power sensor, using StarBright’s “Pulsed Power” function where you input the pulse duration and the meter will give the readout directly in power.


In general, the dynamic range over a given range, i.e. the ratio of maximum useable power to minimum useable power of Ophir thermal OEM sensors is 40:1. If greater dynamic range is desired, Ophir OEM RS232 sensors are available with several selectable ranges.


The new “LP2” type sensors are specially designed for beams having high power and high power density (and for pulsed beams, high energy density). The LP2 sensors are replacing the equivalent LP1 sensors; as impressive as the LP1 is, the LP2 was developed with the following improvements:

  • Very high damage threshold, for both power density and energy density, for long pulse and CW beams;
  • Spectrally flat; since its absorption remains constant at widely differing wavelengths, this means that sensors based on the LP2 can be used for "white light" or polychromatic beams;
  • Very high level of absorption (as high as 96%, depending on wavelength), meaning much less light is scattered back, which for high power beams is an important benefit;
  • The absorption is also largely independent of incident angle, which means it can be used for divergent beams too.

Water cooled sensors will hardly be affected by ambient temperature since the sensor temperature is determined by the water temperature.
Ophir convection and fan cooled sensors are designed to operate in an ambient environment of 25degC up to the maximum rated power continuously.
When operating at its maximum rated power, the sensor’s body should typically not exceed about 80degC in temperature.
Note: If the room temperature is higher than 25degC, then the maximum power (at which the sensor can be safely operated) should be derated accordingly from the specified maximum (since dissipation of the heat from inside the sensor to the surrounding air will be more difficult). For example, if the room temperature is 35degC, then the maximum power limit should be (80-35)/(80-25) = 82% of maximum rated power as given in the sensor’s spec.


The energy threshold (at which a thermal head will be triggered to begin a single pulse energy measurement) has 3 levels: HIGH - ~3% of full scale; MED - ~1% of full scale and LOW - ~0.3% of full scale. Sometimes the lowest energy range and LOW level give false triggering or missing pulses. In any case the standard deviation will be relatively higher in the threshold area. If the head is used in stable conditions, it is generally possible to measure single shot pulses below the specified limit, though its value will be less accurate.