Upon the installation of new laser processing equipment, it is necessary to test and verify the performance of the laser system to insure it meets specification. Just relying upon the test results of the laser prior to shipment is not sufficient – shipping issues, handling problems, and reinstallation activities can all affect the final performance of the equipment. For these reasons, testing the equipment once set up for manufacturing is essential and critical to have the confidence the intended application will achieve or exceed the specification.
...Articles
By Dick Rieley, Mid-Altantic Sales Manager, Ophir Photonics Group
A manufacturer was asked to produce a high volume of molded devices that have an <100um hole in the center through which in the final assembly a specific amount of material will pass. Since the product cannot be tested until fully assembled, any device found to have the incorrect hole size, must be rejected and reworked, thereby reducing productivity. Being able to inspect and sort out acceptable from unacceptable devices prior to...
A manufacturer needed to profile and measure diodes that produce a 1300nm CW source in the 10's of mW's. The inspection needed to be conducted in seconds with full accuracy and repeatability because100% inspection was specified to insure the quality level needed by the customer. As this component was a basic element to the finished product, if any defects could be identified at this stage, a significant savings in scrap product would be realized vs attempting to rework finished product.
The initial...
Many customers involved with laser welding measure the pulse energy output of their lasers, but is this all the data required needed to ensure quality welds? Steve Schellenberg at Spinal Modulation had his doubts. While he found pulse energy measurement using his Ophir equipment useful in qualifying his laser welding process, two of his laser welding stations were producing different quality welds despite producing identical laser pulse energies. One laser welder seemed to be doing an OK job, while the other welder produced significantly...
Causes:
Symptoms:
Overall Effect:
|
... |
by John McCauley, Product Specialist, Ophir-Spiricon
The Advanced Laser Applications Workshop (ALAW) is an annual conference hosted by The Fabricators & Manufacturers Associate (FMA) in the Detroit, Michigan area. ALAW is an excellent forum to discover and discuss the latest technologies with respect to material processing that involves the use of a laser. Being in the Detroit area, the conversations primarily address automotive material processing, however, much discussion is also directed...
By Chuck Reagan, Southeast Sales Engineer, Ophir-Spiricon
From time to time, our company is asked to provide assistance to researchers whose primary field of study is not lasers. In 2005 I began working with a medical researcher at a major medical school whose primary field of study is Dental Material Science. He tested various light sources to photo-cure restorative materials directly in the mouth of the patient.
This researcher worked with...
By Nicolas Chaise, Regional Sales Manager, Ophir Spiricon Europe
Nowadays, it is quite common to weld with a laser. But some welding applications still require expert skills and customized solutions.
A customer of ours in the shipyard market owns a powerful 12KW fiber laser. Most of the time, they weld small metals pieces. But for a new application, it required a new process. Welding Large... |
NanoScan applications are normally processes and the problems that are solved by them are usually one of the processes, such as an alignment, collimation, or a precise focusing process taking too long, not being accurate enough, or requiring too much high level intervention to accomplish by using other methods.
Many applications of lasers require that the laser beam be adjusted to meet some parameter, such as the beam size at the point of work, maintaining a collimated beam over a range...
Photon’s High Power NanoScan is designed to measure "high power" laser beams that were previously impossible to measure with standard BeamScan or NanoScan products. High power is a fairly indistinct term that means different things in different contexts. For our purposes, "high power" is defined as between 100W and 5000W, however the High Power NanoScan will not be able to measure this power range for all wavelengths. High power laser beams are handled by using reflective materials, and the level of reflectivity,...
Introduction
CCD cameras are commonly used for many imaging applications, as well as in optical instrumentation applications. These cameras have many excellent characteristics for both scene imaging and laser beam analysis. However, CCD cameras have two characteristics that limit their potential performance. The first limiting factor is the baseline drift of the camera. If the baseline drifts below the digitizer zero, data in the background is lost,...
By Allen M. Cary, Photon Inc. San Jose CA
Most people working with lasers today are trying to do something with the light beam, either as the raw beam or, more commonly, modified with optics. Whether it is printing a label on a part, welding a precision joint or repairing a retina, it is important to understand the nature of the laser beam and its performance. Laser beam profiling provides the tools to characterize the laser and know precisely what the beam is doing at... |
Choosing the best profiler for a laser is a complex process. There is no one profiler available that works with all lasers because of all the factors involved. Here we'd like to help you begin figuring out what to focus on when doing laser profiler shopping (window or otherwise). First of all, keep in mind that there are two main types of profilers used today:
- Array/camera based profilers and (array is a general term for camera-types of technology where pixels are used to capture an...
By Jeffrey L. Guttman, PhD, Director of Engineering, and Allen M. Cary, Sales & Marketing Manager, Ophir-Photon LLC
The beam profiler magnification calibration involves measuring spot centroids for known beam position translations. This can be done either by moving the profiler or moving the spot. The former method is preferred since the profiler with magnification is usually mounted to a high quality 3-axis translation stage. For a 25x or greater magnification it is recommended to use a stage...