BDFL500A-BB-50 | Laser Thermal Power Sensors | Power Sensors - Ophir

BDFL500A-BB-50

7Z17200
描述: 

BDFL500A-BB-50是一款风扇冷却式激光光束捕集器,具有50mm孔径,最高500W。在全功率下可承受最大7kW/cm²的功率密度,光谱覆盖范围为0.19 - 20µm。

Specification

  • Ø50mm
  • 0.19 - 20µm
  • Up to 500W
  • 90 L x 90 W x 105 D (mm)
  • 7kW/cm²
  • 0.3J/cm²
  • 10J/cm²
  • N.A.
  • CE, China RoHS
Need help finding the right sensor? Try our 传感器查询

FAQ

How should I clean my sensor?

First, clean the absorber surface with a tissue, using Umicore #2 Substrate Cleaner, acetone or methanol. Then dry the surface with another tissue. Please note that a few absorbers (Pyro-BB, 10K-W, 15K-W, 16K-W and 30K-W) cannot be cleaned with this method. Instead, simply blow off the dust with clean air or nitrogen. Don't touch these absorbers. Also, HE sensors (such as the 30(150)A-HE-17) should not be cleaned with acetone.
 
Note: These suggestions are made without guarantee. The cleaning process may result in scratching or staining of the surface in some cases and may also change the calibration.

Was this FAQ helpful to you? yes no
Close

Does the damage threshold depend on power level?

The damage threshold of thermal sensors does depend on the power level and not only the power density because the sensor disc itself gets hotter at high powers. For instance, the damage threshold of the Ophir broadband coating may be 50KW/cm2 at 10 Watts but only 10KW/cm2 at 300W. The Ophir specifications for damage threshold are always given for the highest power of use of a particular sensor, something which is not done by most other manufacturers. This should be taken into account when comparing specifications. The Sensor Finder takes the power level into consideration when calculating damage threshold.

 Watch the 'FAQ: Does damage threshold depend on power level?' video

Was this FAQ helpful to you? yes no
Close

What is the damage threshold of the thermal broadband coating and how does it compare with claims of other manufacturers?

We publish a nominal damage threshold for most of our thermal BB sensors as 20KW/cm2. Other manufacturers may quote higher numbers than this. In actuality, in one to one tests against competitors, our sensors show a higher damage threshold but the actual damage threshold depends on the total power as well as the power density. For very low powers such as 30W, the damage threshold can be as high as 50KW/cm2 and at high powers such as 5KW, it drops to 3KW/cm2. The Ophir sensor finder program takes account of these variations in its calculations.

Was this FAQ helpful to you? yes no
Close

Do I need to recalibrate my instrument? How often must it be recalibrated?

Unless otherwise indicated, Ophir sensors and meters should be recalibrated within 18 months after initial purchase, and then once a year after that.

Was this FAQ helpful to you? yes no
Close

Can a laser measurement depend on the distance from the laser to the sensor?

In theory, if a beam is completely parallel and fits within the aperture of a sensor, then it should make no difference at all what the distance is; it will be the same number of photons (ignoring absorption by the air, which is negligible except in the UV below 250nm). If, nevertheless, you do see such a distance dependence, there could be one of the following effects happening:

  • If you are using a thermal type power sensor, you might actually be measuring heat from the laser itself; when very close to the laser, the thermal sensor might be “feeling” the laser’s own heat. That would not, however, continue to have an effect at more than a few cm distance unless the light source is weak and the heat source is strong.
  • Beam geometry – The beam may not be parallel and may be diverging. Often, the lower intensity wings of the beam have greater divergence rate than the main portion of the beam. These may be missing the sensor's aperture as the distance increases. To check that you'd need to use a profiler, or perhaps a BeamTrack PPS (Power/Position/Size) sensor.
  • If you are measuring pulse energies with a diffuser-based pyroelectric sensor: Some users find that when they start with the sensor right up close to the laser and move it away, the readings drop sharply (typically by some 6%) over the first few cm. This is likely caused by multiple reflections between the diffuser and the laser device, which at the closest distance might be causing an incorrectly high reading. You should back off from the source by at least some 5cm, more if the beam is not too divergent.

Needless to say, it’s also important to be sure to have a steady setup; a sensor held by hand could easily be moved around involuntarily, which could cause partial or complete missing of the sensor’s aperture at increasing distance, particularly for an invisible beam.

Was this FAQ helpful to you? yes no
Close

Videos

Laser Beam Dumps Laser Beam Dumps

Beam Dumps are used to safely absorb the unused part of a laser beam, protecting nearby personnel and equipment. In this video you will learn about Ophir's range of Beam Dump solutions for various power levels.

Tutorials

Tutorials and Articles

Common Reasons for Thermal Sensor Damage or Out of Tolerance Conditions

This document was created to assist our valued customers in the proper care and maintenance of Ophir thermal laser power sensors. The following information is for reference only. If you have any reason to believe that the sensor is no longer performing within the original specifications,we always recommend that you send it in for repair and/or recalibration by our trained technicians to bring the unit back to the proper NIST traceable standards. We believe that Ophir thermal sensors can be used for many years without any repairs when used with the proper laser optical setup. We hope that this document will enable you to also enjoy the long life and reliable results for which Ophir-Spiricon is known.

 阅读更多...

Ophir Power/Energy Meter Calibration Procedure and Traceability/Error Analysis

This document discusses the interpretation and basis for stated measurement accuracy of Ophir Laser Power/Energy meters.
1. General Discussion
2. Combination of Errors and Total Error
3. Analysis of Power and Energy Calibration Errors
4. Detailed Analysis of Power and Energy Calibration Errors

 阅读更多...

Laser Measurements in Materials Processing: How and When They Absolutely, Positively Must Be Made

19th century British physicist and engineer William Thomson, 1st Baron Kelvin, was the first to say, “If you can’t measure it, you can’t improve it.” When applying this principle to improving laser-based processes, there are a variety of parameters that must be measured. Given the continuously rising power of laser systems in material processing, the requirements for measurement systems are more challenging than ever. Which technologies are available to measure high-power lasers? How often should they be measured? What measurements should be tracked? When this data is collected, what should be done with it? 阅读更多...

How do I know what range, or scale, to set my power/energy meter to? And what happens if I go over range?

Each given range represents one level of gain of an internal amplifier. The electronics, as always, have a limited Dynamic Range. If the measured signal is too low, in other words near the bottom of the range, then it may be lost in the noise and the reading will be inaccurate and noisy. If it’s too high – there may be saturation issues. To give an instrument a usefully wide dynamic range, multiple scales or ranges are used. Switching from range to range can be automatic (“Autorange”), or manual. Autoranging simply starts automatically at the least sensitive range and works its way down the ranges, sampling the signal as it goes, till it finds a range at which the signal is properly detected. Note, by the way, that only in POWER mode is Autoranging available. If we are working in Single Shot Energy mode, there is no Autoranging – simply because when we are measuring a single pulse, the instrument has no opportunity to work its way down the ranges as in Power mode.

 阅读更多...

Types of power / Energy Laser Sensors General Introduction

Power and Single Shot Energy Sensors
Ophir provides two types of power sensors: Photodiode sensors and Thermal sensors. Photodiode sensors are used for low powers from picowatts up to hundreds of milliwatts and as high as 3W. Thermal sensors are for use from fractions of a milliwatt up to thousands of watts.
Thermal sensors can also measure single shot energy at pulse rates not exceeding one pulse every ~5s.

Repetitive Pulse Energy Sensors
For higher pulse rates, Ophir has pyroelectric energy sensors able to measure pulse rates up to tens of KHz. These are described in the energy sensor section, section 1.3.

 阅读更多...

5 Situations Where Laser Performance Measurement is Necessary

Measuring the performance of a laser has possible for a number of years and is accomplished with a variety of techniques. These electronic laser measurement solutions give the laser user more relevant, time-based data that shows trends in laser performance rather than single data points. While these solutions have provided laser users with the ability to present data in a simple and easy to understand manner, the application of the data still seems to be unclear to many laser users. 阅读更多...

Accessories

Customers that purchase the above items also consider the following items. Ophir-Spiricon meters and sensors include a standard manufacturers warranty for one year. Add a one year Extended Warranty to your meter or sensor, which includes one recalibration.
  • ST Fiber Adapter

    7Z08226
    This fiber adapter is used for connecting power and energy sensors to a standard ST-type fiber. Many sensors need an additional mounting bracket to connect to all fiber adapters. More information can be found in the datasheet below.
  • FC Fiber Adapter

    FC Fiber Adapter

    7Z08229
    This fiber adapter is used for connecting power and energy sensors to a standard FC-type fiber. Many sensors need an additional mounting bracket to connect to all fiber adapters. More information can be found in the datasheet below.
  • SMA Fiber Adapter

    SMA Fiber Adapter

    1G01236A
    This fiber adapter is used for connecting power and energy sensors to a standard SMA-type fiber. Many sensors need an additional mounting bracket to connect to all fiber adapters. More information can be found in the datasheet below.
  • SC Fiber Adapter

    SC Fiber Adapter

    7Z08227
    This fiber adapter is used for connecting power and energy sensors to a standard SC-type fiber. Many sensors need an additional mounting bracket to connect to all fiber adapters. More information can be found in the datasheet below.
  • FL250/FL400 Fiber Bracket
    A mounting bracket is needed to connect most thermal sensors to a fiber adapter (SC, ST, FC or SMA). This bracket can be used for fan-cooled thermal sensors with a 50mm diameter.
  • N Polarity Power Supply/Charger

    Power Supply/Charger for Centauri, Vega, Nova II, LaserStar, Nova, EA-1, Pulsar, Quasar, 6K-W, 120K-W and fan cooled sensors (1 unit supplied with these products)

  • Extended Warranty for Sensor

    XWAR-SENSOR

    Ophir-Spiricon meters and sensors include a standard manufacturers warranty for one year. Add a one year Extended Warranty to your meter or sensor, which includes one recalibration. More info