FL600A-LP2-65 | Laser Thermal Power Sensors | Power Sensors - Ophir

FL600A-LP2-65

7Z02779
 

The FL600A-LP2-65 is a fan cooled thermal power/energy laser measurement sensor for high power density and long pulse lasers. It has a 65mm aperture and can measure power from 5W to 600W and energy from 600mJ to 600J. Its high damage threshold LP2 absorber covers the spectral range from 0.35 to 2.2µm. The sensor comes with a standard 1.5 meter cable for connecting to a meter or PC interface.

Read more...
  • LP2
  • Ø65mm
  • 0.35 - 2.2µm
  • 5W-600W
  • 600mJ-600J
  • 128 L x 128 W x 116 D (mm)
  • 600J
  • 11kW/cm²
  • 4 s
  • 0.1J/cm²
  • 130J/cm²
  • 600W
Need help finding the right sensor? Try our Sensor Finder

I see Ophir has released some new thermal sensors with an absorber called “LP2”. What is it?

The new “LP2” type sensors are specially designed for beams having high power and high power density (and for pulsed beams, high energy density). The LP2 sensors are replacing the equivalent LP1 sensors; as impressive as the LP1 is, the LP2 was developed with the following improvements:

  • Very high damage threshold, for both power density and energy density, for long pulse and CW beams;
  • Spectrally flat; since its absorption remains constant at widely differing wavelengths, this means that sensors based on the LP2 can be used for "white light" or polychromatic beams;
  • Very high level of absorption (as high as 96%, depending on wavelength), meaning much less light is scattered back, which for high power beams is an important benefit;
  • The absorption is also largely independent of incident angle, which means it can be used for divergent beams too.
Was this FAQ helpful to you? yes no
Close

How do I select the correct wavelength with sensors that have a continual response curve such as silicon photodiode sensors, -LP1/LP2 thermal sensors and 3A-IS sensors?

The sensors with a continual response curve such as the ones listed above come with preset "favorite" wavelengths. If these "favorite" wavelengths do not match the application wavelength you are using they can be changed by performing the instructions below, which are for the Vega meter. For your specific meter, please see the User Manual.

  • While the Vega is off, plug in the head. Switch on the Vega.
  • From the main measurement screen, press "Laser" to select the correct laser wavelength. If you want to save this new wavelength as the startup default, press "Save" before exiting. If the wavelength you want is not among the wavelengths in the six wavelengths listed and you want to change or add a wavelength, see the next step
  • Changing Chosen Wavelengths:
    • From the power measurement screen select "Laser" and enter. Move to the wavelength you wish to change or add. Press the right navigation key.
    • Using the up/down keys to change each number and the right/left keys to move to the next number, key in the desired wavelength. Press the Enter key to exit. If you wish to save this new wavelength as one of the 6 favorite wavelengths, press "Save".

Note: Saving the new wavelength in the Modify screen will not set this wavelength as the default startup wavelength. To do so, you must follow the instructions in Step 2 above.

Was this FAQ helpful to you? yes no
Close

For measuring high average powers, you need to use a high average power sensor (read: big, heavy, water-cooled, expensive). Right?

Well, partly right.

Ophir has for many years had a few sensors that are designed for intermittent use. They are marked by two numbers like 50(150), which means it can measure 50 W continuously, or 150 W for a brief exposure (1.5 minutes in this example). Keeping in mind that power is energy over time, and that it is the total energy absorbed over time that causes a sensor to heat up, it should be possible to expose a sensor to “too high” power but only for a short time, and have the sensor survive the experience. The sensor can treat that short exposure as if it were just one long “single shot” pulse, and measure the energy of that pulse. Divide the energy by the (known) pulse width, and that gives the power during the pulse. (It can’t measure power directly this way, though, since a thermal sensor’s response time to power is itself a few seconds). For example, the moderate-power L40(150)A-LP2 has a 10KJ energy scale (several other sensors also have multi kJ scales); to measure power of an 8KW beam, we can fire the laser for 0.5 seconds with the sensor in energy mode, and we’ll measure 4KJ energy in the “pulse”. Dividing that by 0.5 seconds gives the 8KW beam power. Of course we then need to wait for the sensor to cool before repeating, but in some applications that may be perfectly OK
If you have the StarBright meter, you can do the above automatically, with any power sensor, using StarBright’s “Pulsed Power” function where you input the pulse duration and the meter will give the readout directly in power.

Was this FAQ helpful to you? yes no
Close

How should I clean my sensor?

First, clean the absorber surface with a tissue, using Umicore #2 Substrate Cleaner, acetone or methanol. Then dry the surface with another tissue. Please note that a few absorbers (Pyro-BB, 10K-W and 30K-W) cannot be cleaned with this method. Instead, simply blow off the dust with clean air or nitrogen. Don't touch these absorbers. Also, HE sensors (such as the 30(150)A-HE-17) should not be cleaned with acetone.
 
Note: These suggestions are made without guarantee. The cleaning process may result in scratching or staining of the surface in some cases and may also change the calibration.

Was this FAQ helpful to you? yes no
Close

When an accuracy spec is given, what exactly is meant?

The Ophir specification on accuracy is in general 2 sigma standard deviation. This means, for instance, that if we list the accuracy as +/-3%, this means that 95% of the sensors will be within this accuracy and 99% will be within +/-4% For further information on accuracy see http://www.ophiropt.com/laser-measurement-instruments/laser-power-energy-meters/tutorial/calibration-procedure

Was this FAQ helpful to you? yes no
Close

Must I use a particular sensor only with the meter it was ordered with?

Ophir meters and sensors are calibrated independently. Each meter has the same sensitivity as the other within about 2 tenths of a percent. Each sensor is calibrated independently of a particular meter with its calibration information contained in the DB15 plug. When the sensor is connected to the meter, the meter reads and interprets this information. Since the accuracy of our sensors is typically +/-3%, the extra 0.2% error that could come from plugging into a different meter is negligible and therefore it does not matter which calibrated meter we use with a particular calibrated sensor.

Was this FAQ helpful to you? yes no
Close

How is the performance of thermal sensors affected by ambient temperature?

Water cooled sensors will hardly be affected by ambient temperature since the sensor temperature is determined by the water temperature.
Ophir convection and fan cooled sensors are designed to operate in an ambient environment of 25degC up to the maximum rated power continuously.
When operating at its maximum rated power, the sensor’s body should typically not exceed about 80degC in temperature.
Note: If the room temperature is higher than 25degC, then the maximum power (at which the sensor can be safely operated) should be derated accordingly from the specified maximum (since dissipation of the heat from inside the sensor to the surrounding air will be more difficult). For example, if the room temperature is 35degC, then the maximum power limit should be (80-35)/(80-25) = 82% of maximum rated power as given in the sensor’s spec.

Was this FAQ helpful to you? yes no
Close

Does the damage threshold depend on power level?

The damage threshold of thermal sensors does depend on the power level and not only the power density because the sensor disc itself gets hotter at high powers. For instance, the damage threshold of the Ophir broadband coating may be 50KW/cm2 at 10 Watts but only 10KW/cm2 at 300W. The Ophir specifications for damage threshold are always given for the highest power of use of a particular sensor, something which is not done by most other manufacturers. This should be taken into account when comparing specifications. The Sensor Finder takes the power level into consideration when calculating damage threshold.

 Watch the 'FAQ: Does damage threshold depend on power level?' video

Was this FAQ helpful to you? yes no
Close

Ophir thermal sensors have pin fins for cooling. They used to be cooled by flat fins. What's the difference?

Pin fins can cool the same laser power to a lower temperature or take higher power in the same size sensor. Take the FL250A sensor, for example, used with a 250 W laser: The old version would reach 74 °C at maximum power, while the new only reaches 55 °C.

Was this FAQ helpful to you? yes no
Close

Do I need to recalibrate my instrument? How often must it be recalibrated?

Unless otherwise indicated, Ophir sensors and meters should be recalibrated within 18 months after initial purchase, and then once a year after that.

Was this FAQ helpful to you? yes no
Close

Can a laser measurement depend on the distance from the laser to the sensor?

In theory, if a beam is completely parallel and fits within the aperture of a sensor, then it should make no difference at all what the distance is; it will be the same number of photons (ignoring absorption by the air, which is negligible except in the UV below 250nm). If, nevertheless, you do see such a distance dependence, there could be one of the following effects happening:

  • If you are using a thermal type power sensor, you might actually be measuring heat from the laser itself; when very close to the laser, the thermal sensor might be “feeling” the laser’s own heat. That would not, however, continue to have an effect at more than a few cm distance unless the light source is weak and the heat source is strong.
  • Beam geometry – The beam may not be parallel and may be diverging. Often, the lower intensity wings of the beam have greater divergence rate than the main portion of the beam. These may be missing the sensor's aperture as the distance increases. To check that you'd need to use a profiler, or perhaps a BeamTrack PPS (Power/Position/Size) sensor.
  • If you are measuring pulse energies with a diffuser-based pyroelectric sensor: Some users find that when they start with the sensor right up close to the laser and move it away, the readings drop sharply (typically by some 6%) over the first few cm. This is likely caused by multiple reflections between the diffuser and the laser device, which at the closest distance might be causing an incorrectly high reading. You should back off from the source by at least some 5cm, more if the beam is not too divergent.

Needless to say, it’s also important to be sure to have a steady setup; a sensor held by hand could easily be moved around involuntarily, which could cause partial or complete missing of the sensor’s aperture at increasing distance, particularly for an invisible beam.

Was this FAQ helpful to you? yes no
Close
 
LP2 Laser sensors coating: very high damage threshold, very low reflection LP2 Laser sensors coating: very high damage threshold, very low reflection

Even higher damage threshold…flat spectral response…absorption up to 96%...
These are some of the characteristics of the new “LP2” type laser power sensors from Ophir.
Learn more in this video.

Tutorials and Articles

Laser Power Sensors introduction

As described in the general introduction, the thermopile sensor has a series of bimetallic junctions. A temperature difference between any two junctions causes a voltage to be formed between the two junctions. Since the junctions are in series and the «hot» junctions are always on the inner, hotter side, and the «cold» junctions are on the outer, cooler side, radial heat flow on the disc causes a voltage proportional to the power input. Laser power impinges on the center of the thermopile sensor disk (on the reverse side of the thermopile), flows radially and is cooled on the periphery. The array of thermocouples measures the temperature gradient, which is proportional to the incident or absorbed power. In principle, the reading is not dependent on the ambient temperature since only the temperature difference affects the voltage generated and the voltage difference depends only on the heat flow, not on the ambient temperature.

 Read more...

Common Reasons for Thermal Sensor Damage or Out of Tolerance Conditions

This document was created to assist our valued customers in the proper care and maintenance of Ophir thermal laser power sensors. The following information is for reference only. If you have any reason to believe that the sensor is no longer performing within the original specifications,we always recommend that you send it in for repair and/or recalibration by our trained technicians to bring the unit back to the proper NIST traceable standards. We believe that Ophir thermal sensors can be used for many years without any repairs when used with the proper laser optical setup. We hope that this document will enable you to also enjoy the long life and reliable results for which Ophir-Spiricon is known.

 Read more...

Setting your thermal sensor up in energy mode for the best accuracy and repeatability.

Range Selection Use the lowest range that is larger than the pulse energy to be measured. For example, if you want to measure a 2.7 Joule pulse, use the 3 J range instead of the 30 J range. This will allow for maximum resolution (a 2.700 J reading versus a 2.70 J reading). Threshold Selection For most energy measurements, the default MEDIUM setting is appropriate. If taking measurements in a noisy environment or where there is a high level of background thermal radiation, the instrument may trigger spuriously on the noise or the background radiation. In this case, the user may select the HIGH Read more...

How Much of the Power Sensor Aperture Can My Laser Fill Up?

The entire aperture senses power, so you can use the whole head. That said, a beam in the inner 50% of the surface area (about 70% of the diameter) is specified by Ophir to be uniform within +/-2%. The sensitivity around the edges might be a little less, but generally the sensitivity doesn’t vary by more than +/-2% over the entire aperture.

 Read more...

Effect of Ambient Conditions on Laser Measurements

We are often asked about the specified ranges of various ambient conditions (temperature, humidity, etc.) for Ophir instruments. In this article we will clarify the effects of these conditions on laser measurements, so you’ll be able to use your Ophir laser measurement instrument effectively.

 Read more...

Accessories

Customers that purchase the above items also consider the following items. Ophir-Spiricon meters and sensors include a standard manufacturers warranty for one year. Add a one year Extended Warranty to your meter or sensor, which includes one recalibration.
  • N Polarity Power Supply/Charger

    Power Supply/Charger for Vega, Nova II, Laserstar, Nova, EA-1, Pulsar, Quasar, 6K-W, 120K-W and fan cooled sensors (1 unit supplied with these products)

  • 3m Cable

    3m Cable

    7E01122A

    3m cable to connect sensor to power meter or interface. Order along with sensor to receive this instead of the standard 1.5m cable.

  • 5m Cable

    5m Cable

    7E01122B

    5m cable to connect sensor to power meter or interface. Order along with sensor to receive this instead of the standard 1.5m cable.

  • 10m Cable

    10m Cable

    7E01122C

    10m cable to connect sensor to power meter or interface. Order along with sensor to receive this instead of the standard 1.5m cable.

  • 12m Cable

    12m Cable

    7E01122D

    12m cable to connect sensor to power meter or interface. Order along with sensor to receive this instead of the standard 1.5m cable.

  • SH to BNC Adapter

    SH to BNC Adapter

    7Z11010

    Allows connection of smart sensors to voltage measuring device for measurement of raw voltage output

Related Products