F150A-BB-26 | Laser Thermal Power Sensors | Power Sensors - Ophir

F150A-BB-26

7Z02727

The F150A-BB-26 is a general purpose fan cooled thermal power/energy laser measurement sensor with a 26mm aperture. It can measure power from 50mW to 150W and energy from 20mJ to 100J. It has the spectrally flat broadband coating and covers the spectral range from 0.19 to 20µm. The sensor comes with a standard 1.5 meter cable for connecting to a meter or PC interface.

  • Broadband
  • Ø26mm
  • 0.19-20µm
  • 50mW-150W
  • 20mJ-100J
  • 64 L x 64 W x 93 D (mm)
  • 100J
  • 12kW/cm²
  • 1.5 s
  • 0.3J/cm²
  • 10J/cm²
  • 150W
Need help finding the right sensor? Try our Sensor Finder

How should I clean my sensor?

First, clean the absorber surface with a tissue, using Umicore #2 Substrate Cleaner, acetone or methanol. Then dry the surface with another tissue. Please note that a few absorbers (Pyro-BB, 10K-W and 30K-W) cannot be cleaned with this method. Instead, simply blow off the dust with clean air or nitrogen. Don't touch these absorbers. Also, HE sensors (such as the 30(150)A-HE-17) should not be cleaned with acetone.
 
Note: These suggestions are made without guarantee. The cleaning process may result in scratching or staining of the surface in some cases and may also change the calibration.

Close

When an accuracy spec is given, what exactly is meant?

The Ophir specification on accuracy is in general 2 sigma standard deviation. This means, for instance, that if we list the accuracy as +/-3%, this means that 95% of the sensors will be within this accuracy and 99% will be within +/-4% For further information on accuracy see http://www.ophiropt.com/laser-measurement-instruments/laser-power-energy-meters/tutorial/calibration-procedure

Close

Must I use a particular sensor only with the meter it was ordered with?

Ophir meters and sensors are calibrated independently. Each meter has the same sensitivity as the other within about 2 tenths of a percent. Each sensor is calibrated independently of a particular meter with its calibration information contained in the DB15 plug. When the sensor is connected to the meter, the meter reads and interprets this information. Since the accuracy of our sensors is typically +/-3%, the extra 0.2% error that could come from plugging into a different meter is negligible and therefore it does not matter which calibrated meter we use with a particular calibrated sensor.

Close

How is the performance of thermal sensors affected by ambient temperature?

Water cooled sensors will hardly be affected by ambient temperature since the sensor temperature is determined by the water temperature. Ophir convection and fan cooled sensors are designed to operate in an ambient environment of 25degC up to the maximum rated power continuously. At this power, the sensors should not exceed about 80degC in temperature. If the room temperature is higher, then the maximum power should be derated accordingly. For example if the room temperature is 35degC, then the maximum power should be (75-35)/(75-25) = 80% of maximum rated power.

Close

Does the damage threshold depend on power level?

The damage threshold of thermal sensors does depend on the power level and not only the power density because the sensor disc itself gets hotter at high powers. For instance, the damage threshold of the Ophir broadband coating may be 50KW/cm2 at 10 Watts but only 10KW/cm2 at 300W. The Ophir specifications for damage threshold are always given for the highest power of use of a particular sensor, something which is not done by most other manufacturers. This should be taken into account when comparing specifications. The Sensor Finder takes the power level into consideration when calculating damage threshold.

Close

Ophir thermal sensors have pin fins for cooling. They used to be cooled by flat fins. What's the difference?

Pin fins can cool the same laser power to a lower temperature or take higher power in the same size sensor. Take the FL250A sensor, for example, used with a 250 W laser: The old version would reach 74 °C at maximum power, while the new only reaches 55 °C.

Close
FAQ: Thermal Sensors for Measuring Low, Medium & High Laser Powers FAQ: Thermal Sensors for Measuring Low, Medium & High Laser Powers
How do I measure power of broadband sources like flash lamps, some LEDs, or sunlight? How do I measure power of broadband sources like flash lamps, some LEDs, or sunlight? How do I measure power of broadband sources like flash lamps, some LEDs, or sunlight?

This video explains how to use Ophir sensors and meters to measure the power or energy of broadband light sources such as solar radiation, flash lamps, LEDs etc.

On what factors do Ophir sensor accuracy specs depend? On what factors do Ophir sensor accuracy specs depend? On what factors do Ophir sensor accuracy specs depend?

Ophir's CTO, Dr. Ephraim Greenfield discusses the various factors that contribute to uncertainties in measurement when using Ophir laser power and energy meters. He discusses the various factors and shows how they combine to give the total uncertainty.

Effects of Incidence Angle on Measurements Effects of Incidence Angle on Measurements Effects of Incidence Angle on Measurements

Are you measuring a laser beam coming at an angle correctly?
Ever wonder how your laser power measurements are affected by your beam’s angle of incidence?
In this video, you will learn to what degree a beam’s incidence angle matters, and for which sensor types this should be taken into account.

In this short “Basics” video we review the use – and selection - of thermal sensors for measuring low, medium and high laser powers.

Tutorials and Articles

Laser Power Sensors introduction

As described in the general introduction, the thermopile sensor has a series of bimetallic junctions. A temperature difference between any two junctions causes a voltage to be formed between the two junctions. Since the junctions are in series and the «hot» junctions are always on the inner, hotter side, and the «cold» junctions are on the outer, cooler side, radial heat flow on the disc causes a voltage proportional to the power input. Laser power impinges on the center of the thermopile sensor disk (on the reverse side of the thermopile), flows radially and is cooled on the periphery. The array of thermocouples measures the temperature gradient, which is proportional to the incident or absorbed power. In principle, the reading is not dependent on the ambient temperature since only the temperature difference affects the voltage generated and the voltage difference depends only on the heat flow, not on the ambient temperature.

 Read more...

Common Reasons for Thermal Sensor Damage or Out of Tolerance Conditions

This document was created to assist our valued customers in the proper care and maintenance of Ophir thermal laser power sensors. The following information is for reference only. If you have any reason to believe that the sensor is no longer performing within the original specifications,we always recommend that you send it in for repair and/or recalibration by our trained technicians to bring the unit back to the proper NIST traceable standards. We believe that Ophir thermal sensors can be used for many years without any repairs when used with the proper laser optical setup. We hope that this document will enable you to also enjoy the long life and reliable results for which Ophir-Spiricon is known.

 Read more...

Wavelength Guide for Thermal Laser Power Sensors

Thermal laser power sensors have various coatings used to absorb the laser heat. Each coating has its own absorption per wavelength graph which means that each coating also has its own range of calibrated wavelengths.  Read more...

Factors that can impact the accuracy of the laser/power measurements

So you acquired a brand new laser power sensor, is there anything else you should know to ensure high accuracy of your laser measurements?There are a few factors you should keep in mind in general and depending on the type of sensor.  Read more...

Ophir Thermal BB Coating Power Meter Sensor Angular Dependence

For optimal accuracy the Ophir thermal power meter sensor will be placed in the beam path perpendicular to the incident beam. There is an angular dependence that will reduce the measurement accuracy by some percentage as is indicated in the chart below. It is recommended that the angularity not exceed 20-30 degrees in order to keep the error to an acceptable minimum. Read more...

How Much of the Power Sensor Aperture Can My Laser Fill Up?

The entire aperture senses power, so you can use the whole head. That said, a beam in the inner 50% of the surface area (about 70% of the diameter) is specified by Ophir to be uniform within +/-2%. The sensitivity around the edges might be a little less, but generally the sensitivity doesn’t vary by more than +/-2% over the entire aperture.

 Read more...

Effect of Ambient Conditions on Laser Measurements

We are often asked about the specified ranges of various ambient conditions (temperature, humidity, etc.) for Ophir instruments. In this article we will clarify the effects of these conditions on laser measurements, so you’ll be able to use your Ophir laser measurement instrument effectively.

 Read more...

Accessories

Customers that purchase the above items also consider the following items. Ophir-Spiricon meters and sensors include a standard manufacturers warranty for one year. Add a one year Extended Warranty to your meter or sensor, which includes one recalibration.
  • FC Fiber adapter

    FC Fiber adapter

    7Z08229

    FC Fiber adapter – needs mounting bracket below

  • SC Fiber Adapter

    SC Fiber Adapter

    7Z08227

    SC Fiber adapter – needs mounting bracket below

  • N Polarity Power Supply/Charger

    Power Supply/Charger for Vega, Nova II, Laserstar, Nova, Pulsar, Quasar, 6K-W, 120K-W and fan cooled sensors (1 unit supplied with these products)

  • 3m Cable

    3m Cable

    7E01122A

    3m cable to connect sensor to power meter or interface. Order along with sensor to receive this instead of the standard 1.5m cable.

  • 5m Cable

    5m Cable

    7E01122B

    5m cable to connect sensor to power meter or interface. Order along with sensor to receive this instead of the standard 1.5m cable.

  • 10m Cable

    10m Cable

    7E01122C

    10m cable to connect sensor to power meter or interface. Order along with sensor to receive this instead of the standard 1.5m cable.

  • 12m Cable

    12m Cable

    7E01122D

    12m cable to connect sensor to power meter or interface. Order along with sensor to receive this instead of the standard 1.5m cable.

  • SH to BNC Adapter

    SH to BNC Adapter

    7Z11010

    Allows connection of smart sensors to voltage measuring device for measurement of raw voltage output